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Abstract

Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic
coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in
which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of
synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a
diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but
smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in
networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We
show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of
strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a sim-
ple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the pre-
ferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of
diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexi-
bly interact with other forms of synaptic organisation.

Introduction

A common assumption when constructing a theory of neural plas-
ticity is that neurons require some form of synaptic connection,
electrical or chemical, to communicate. There exists, however, a
number of neurotransmitters whose gaseous properties allow them
to diffuse freely and rapidly across cell membranes (Dawson &
Snyder, 1994; Kiss & Vizi, 2001; Boehning & Snyder, 2003;
Garthwaite, 2008). Experiments characterising this effect have
demonstrated that neurons which synthesise nitric oxide (NO), a
diffusive neurotransmitter, can alter the excitability of other neurons
up to away (Steinert et al., 2008; Artinian et al., 2010). Diffusive
neurotransmitters therefore provide an alternative means of commu-
nication among neighbouring neurons which is independent of
synaptic connectivity, a phenomenon often called volume transmis-
sion. In a previous theoretical study we explored the consequences
of this effect on network activity, finding that homeostatic plasticity
mediated by a diffusive signal enables the maintenance of diverse
and flexible neural responses within a network (Sweeney et al.,
2015). Here, we propose a new form of synaptic plasticity in
which changes in the synaptic weight are mediated by such a diffu-
sive neurotransmitter. This is achieved by modifying the

Bienenstock–Cooper–Munro (BCM) learning rule (Bienenstock
et al., 1982) so that the variable representing the activity of the
postsynaptic neuron is replaced by a variable representing the com-
bined activity of the postsynaptic neuron and its neighbouring neu-
rons. We name this modified learning rule diffusive BCM (dBCM).
We explore the consequences of dBCM on synaptic connectivity
following plasticity in simple rate-based network models with feed-
forward and recurrent architectures, finding that the resulting synap-
tic structure differs from that in networks with an unmodified
BCM learning rule.
First, we observe emergent spatial synaptic structure in response

to uncorrelated random inputs in networks with dBCM, unlike in
networks with BCM. This structure reflects the underlying spatial
structure within the network, with neurons that are close together
more likely to be strongly connected than neurons which are further
away. Second, we find that presenting groups of correlated inputs to
the network leads to the development of strongly interconnected
assemblies of neurons in networks with both dBCM and BCM, but
that this structure is in addition to the underlying spatial structure in
the synaptic connectivity of networks with dBCM. Finally, in a min-
imal model of receptive field development, we find that dBCM leads
to spatial organisation in the input which output neurons become
selective to, with neighbouring neurons more likely to share stimu-
lus preference than in networks with BCM. These spatial
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correlations are similar to those observed in sensory brain areas,
such as in orientation preference and ocular dominance maps in
visual cortex (Kaschube, 2014), or tonotopic maps in auditory cortex
(Reale & Imig, 1980).

Methods

Neuron model

We use a simple firing rate neuron model, given by the transfer
function g (y) defined below, and as used previously by Rajan et al.
(2010; Hennequin et al., 2014).

gðyÞ ¼ r0 tanh½y=r0� if y\0
ðrmax � r0Þ tanh½y=ðrmax � r0Þ� if y� 0

�
ð1Þ

This leads to firing rates with a baseline of r0 and a maximum of
rmax. Following Rajan et al. (2010), the firing rates yi of neuron i
driven by external input Hi in a network are described below.

dyi
dt

¼ �yi þ
XN
j¼i

Wjig yj
� �þ Hi ð2Þ

Representing neuron position in space

To test the effects of a diffusive mediator of synaptic plasticity, we
introduce a description of physical space in our network model. A
straightforward approach is to represent neuron positions along a
single spatial dimension, i.e. along a line. By assuming that neurons
are point sources along this line, the position of neuron i can be
denoted by a single variable, pi, where positions are bounded such
that 0 < pi < 1.
To avoid discontinuous boundary effects we use periodic bound-

ary conditions when calculating distance, so that a neuron located at
0.91 is a distance of 0.1 units from a neuron located at 0.01. The
distance between two neurons with positions pi and pj is therefore
given by min pi � pj

�� ��; pi þ 1:0� pj
�� ��; pj þ 1:0� pi

�� ��� �
. As we only

simulate synaptic plasticity in synapses between excitatory neurons,
the spatial location of inhibitory neurons in the recurrent network
can be ignored, and so only excitatory neurons are assigned spatial
coordinates.

Modelling synaptic plasticity

We use the BCM learning rule to model synaptic plasticity in recur-
rent excitatory to excitatory (E-E) synapses (Bienenstock et al.,
1982; Blais & Cooper, 2008). I-E and E-I weights remain fixed
throughout the simulation.

dWEE
ij

dt
¼ ayiyj yj � hj

� � ð3Þ

dhi
dt

¼ 1
sh

yi
2

y0
ð4Þ

The BCM learning rule has both a Hebbian component and a
homeostatic component. This form of plasticity is competitive and
leads to the development of stimulus selectivity, as discussed in
Bienenstock et al. (1982). To prevent extremely strong synapses,
weights are bounded so that their values lie between 0 and wmax.

Investigating the diffusive range of NO

We use a mathematical description of NO diffusion to investigate
the conditions under which a diffusive neurotransmitter can achieve
significant concentrations over a volume large enough to affect the
synapses of neighbouring neurons. This is based on previous work
by Philippides (2001; Philippides et al., 2005), later extended by
Bellefontaine et al. (2014; Garthwaite, 2015). Given multiple spheri-
cal sources of NO, the concentration at coordinates (x, y, z) in 3D
space after a time t can be written as

NO½ � x; y; z; tð Þ ¼ 1
103Nav

Pn�1

a¼0
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b¼0
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c¼0
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where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xaÞ2 þ ðy� ybÞ2 þ ðz� zcÞ2

q
. Above, Nav is

Avagadro’s number (molecules/Mole), Q is the rate of NO synthesis
at a single source (molecules/s), D is the diffusion coefficient of NO
(m2/s), k is the inactivation rate of NO (1/s), r0 is the radius of the
spherical source (m) and xa, yb, zc are the spatial coordinates of the
sources. As in Bellefontaine et al. (2014; Garthwaite, 2015), we use
D = 8.48 9 10�10 m2/s and r0 = 0.2 lm, Q = 40 molecules/s for
synaptic sources.
Experimental estimates of excitatory synapse density range from

0.25 lm�3 in layer 5 motor cortex, 0.72 lm�3 in mouse neocortex
to 1.7 lm�3 in dentate gyrus (Sch€uz & Palm, 1989; Monfils et al.,
2005). In addition, a quantitative analysis observed nNOS expres-
sion in 8% of CA1 pyramidal neuron synapses (Burette et al.,
2002). Combining these gives us an estimate of ~ 0.1 lm�3 for the
density of potential synaptic NO sources. We can investigate the
effects of diffusion within a cube of length 50 lm and volume
1.25 9 105 lm3 containing either densely activated synaptic
sources, where 1% of potential sources are active (corresponding to
125 sources within the volume), or sparsely activated sources, where
0.2% of potential sources are active (corresponding to 25 sources
within the volume). Assuming a neural density of roughly
9.2 9 104 mm�3, this volume would be occupied by � 10 neurons
(Sch€uz & Palm, 1989; Rubinov et al., 2015). Active synaptic
sources are randomly positioned within this volume by generating
their coordinates xa, yb, zc from a uniform distribution. The steady-
state concentration of the points on a 2D slice of this volume (at
z = 25 lm) can by computed by solving Eqn 5 at time t = 1 s,
summing over all active synaptic sources in the volume.

Simulating the effect of a diffusive plasticity mediator

To simulate the effect of a diffusive mediator of synaptic plasticity
in our learning rule, we introduce a mechanism by which the activ-
ity of neighbouring postsynaptic neurons influence the synaptic
weight changes that occurs at a particular synapse. This is achieved
by replacing the postsynaptic firing rate yj in Eqn 3 with a spatially
averaged postsynaptic firing rate, denoted ~yj. This alteration results
in a learning rule described by the equations below and Eqn 4,
which remains unchanged.

dWij

dt
¼ ayiyj ~yj � hj

� � ð6Þ

d~yj
dt

¼ 1
s~y

�~yj þ
PNE

i¼1 DijyiPNE
i¼1 Dij
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Dij denotes the diffusive range between neuron i and neuron j.
We assume that diffusion has a Gaussian spatial profile, such that
the diffusive range between two neurons i and j with positions pi
and pj is given by

Dij ¼ 1

rD
ffiffiffiffiffiffi
2p

p e
�pi�pj
2r

D2 : ð8Þ

The standard deviation rD is the width of the spatial profile, and
can be thought of as the spatial range of the diffusive neurotransmit-
ter. As the contribution of an individual neuron i to its own spatially
averaged activity ~yl should be significantly larger than that of neigh-
bouring neurons, we set the diffusive range such that Dii = 2. This
is in contrast with neighbouring neurons, where their contribution to
~yl is always <1. The diffusive range matrix, D, is shown in Fig. 3C
for a network in which neurons are positioned between 0 and 1 with
regular spacing, with their indices sorted according to their position.
The neuron with index 1 therefore has a position p1 = 0.0, and
the neuron with index 40 has a position p40 ¼ 1� 1

40 ¼ 0:975.
Figure 3D shows D for a network in which neurons are randomly
and uniformly positioned between 0 and 1, after which their indices
are sorted according to their position.

Recurrent network model

The dynamics of both inhibitory (I) and excitatory (E) neurons are
described by Equs 1 and 2. There is dense all-to-all synaptic con-
nectivity in the E-E, E-I and I-E populations, and no I-I connectiv-
ity. Self-connections, or autapses, are not permitted in this network.
As such, Wij in Eqn 2 takes the form of a square matrix with size
ðNE þ NIÞ2 , where NE and NI represent the number of excitatory
and inhibitory neurons respectively. The strength of the inhibitory
synapses are uniform, and set so that the inhibitory current roughly
balances excitatory currents in the network.

Random inputs

Every 500 ms, a randomly chosen group of neurons receive a large
external input with a firing rate of Hmax, whereas the remaining neu-
rons in the network receive external input with a lower firing rate of
H0. These firing rates are kept constant for the next 500 ms. The
number of neurons in this random group is also random, drawn
from a uniform distribution between 10 and 20.

Correlated input groups

As neurons are spatially ordered by index, we can introduce spa-
tially structured groups of correlated external input by assigning four
groups of 10 identical external inputs each to neurons with indices
1–10, 11–20, 21–30 and 31–40. For correlated inputs in which there
is no spatial structure, four groups of 10 external inputs are

randomly assigned to the 40 excitatory neurons, with no dependence
on their indices and, by extension, spatial positions.
Every 500 ms, a randomly chosen group is activated, such that

the 10 neurons within this group receive input at a firing rate of
Hmax, whereas the remaining neurons in the network receive exter-
nal input with a lower firing rate of H0. These firing rates are kept
constant for the next 500 ms.

Feedforward network model

This feedforward network consists of excitatory neurons only. The
network is composed of a input layer of five neurons and an output
layer of 50 neurons. There is all-to-all synaptic connectivity between
neurons in the input and output layers, and no lateral connectivity
between neurons in either layer. Each neuron i in the input layer
receives an external excitatory drive Hi.
Every 500 ms, a randomly chosen neuron k in the input layer

receives a large external drive by setting Hk = Hmax, whereas the
external drive to the rest of the input neuron remains at H0. These
firing rates are kept constant for the next 500 ms.

Simulating synaptic plasticity

In all our networks simulations, we initialise the excitatory synaptic
weight matrices to uniform values of 0.4 wmax. External input is
then presented to the network as described above, with either a
BCM or dBCM learning rule mediating synaptic plasticity. To
ensure that synaptic weights are sufficiently stable, we run each net-
work instantiation for 105 s (i.e. 2 9 105 input presentations) before
analysing the final synaptic weight matrix. Simulation parameters
are given in Table 1.
Network simulations and data analysis was performed with the

numpy PYTHON package and plotting with the MATPLOTLIB package
and IPYTHON notebook (Hunter, 2007; Perez & Granger, 2007; van
der Walt et al., 2011). Simulation code and IPYTHON Notebooks
which perform the data analysis and plotting are available on Mod-
elDB (http://modeldb.yale.edu) and at https://github.com/yannaodh/
sweeney-2016.

Results

We explore the effect of Hebbian synaptic plasticity which is medi-
ated by a diffusive neurotransmitter. This is implemented as a BCM
learning rule in which the variable representing postsynaptic activity
is modified so that it is also influenced by the activity of neighbour-
ing neurons. This modification can be represented as follows:

weight change ¼ pre� post� ðspatially averaged post� thresholdÞ:

See Eqns (6) and (7) in Methods for further details. As such,
whenever a synapse is potentiated or depressed, a similar but

Table 1. Simulation parameters

NE 40 NI 10 r0 1.0 Hz rmax 20.0 Hz

dt 0.05 ms a 5 9 10�12 Hz sh 4 9 104 ms s~y 100 ms
wmax 0.06 H0 2.5 Hz Hmax 10 Hz y0 5 Hz
rD 0.25 winhibitory �0.03

Feedforward network
Ninput 5 Noutput 50 a 2.5 9 10�12 Hz wmax 1.0
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smaller synaptic weight change will occur in synapses connecting to
neurons which neighbour the original postsynaptic neuron. This
effect is illustrated in Fig. 1. The threshold term above refers to the
sliding threshold that determines whether synaptic potentiation or
synaptic depression occurs, and which depends on recent postsynap-
tic activity.
This proposed form of synaptic plasticity, which we call dBCM,

is explored in a simple network model of rate-based neurons. Net-
works with both feedforward and recurrent architectures are investi-
gated, as illustrated in Figs 3A and 5A.

Diffusive range of multiple synaptic sources

We first investigate the conditions necessary for the transmission of
a diffusive signal over a range large enough to affect the synapses
of neighbouring neurons. We estimate the density of potential exci-
tatory synaptic sources of NO, a neurotransmitter whose diffusive
properties have been widely characterised, as � 0.1 lm�3 (Kiss &
Vizi, 2001; Burette et al., 2002; Garthwaite, 2015). From this we
calculate the steady-state concentrations of NO for a 2D slice within
a cubic volume of radius 50 lm, estimated to contain � 10 neu-
rons (Fig. 2, see Methods) (Sch€uz & Palm, 1989; Rubinov et al.,
2015). As the inactivation rate of NO in vivo is not well constrained
by experiment, we investigate diffusion with both a low inactivation
rate (k = 5 s�1, corresponding to a half-life of 139 ms), and a high
inactivation rate (k = 138 s�1, corresponding to a half-life of 5 ms).
Figure 2A,B show the steady-state concentrations for k = 5 s�1,

with either 0.2% (sparse) or 1.0% (dense) of potential sources
actively synthesising NO. Figure 2C shows the concentration of NO
for points on the slice shown in Fig. 2A,B, depending on the dis-
tance from each point to its nearest active synaptic source. For spar-
sely activated synaptic sources, concentrations are around 50 pM
within 5 lm of a synaptic source, falling to around 10 pM for points
over 10 lm away from a synaptic source. For densely activated
synaptic sources, concentrations decrease from 150 pM to around
50 pM over 10 lm away (note that there are no points more than
12 lm from a synaptic source because of the higher density of these
sources). These concentrations lie within the range for which signal
transduction of NO occurs, which can be as low as 10 pM (Batche-
lor et al., 2010).

Figure 2D,F shows the same as Fig. 2A–C, but for k = 138 s�1.
The steady-state concentrations are much lower in this case, with
significant concentrations only occurring <5 lm from synaptic
sources. Increasing the density of synaptic sources does not have a
large effect on the effective diffusive range for k = 138 s�1. A low
inactivation rate is important to maintain significant concentrations,
whereas the density of synaptic sources of NO will also increase the
diffusive range. Although the diffusive range would not extend over
the entire dendritic arbour of neocortical neurons, these results
demonstrate that the volume transmission of NO is possible over
distances such that a portion of synapses at neighbouring neurons,
though not all, may be affected. This is especially plausible when
we consider the high densities of axonal-dendritic contacts observed
in ultrastructural EM reconstructions (Mishchenko et al., 2010). To
remain agnostic about the properties of the diffusive neurotransmit-
ter we are modelling, we will explore the effects of dBCM over a
broad range of effective diffusive ranges, assuming that the concen-
tration decreases with distance from the synaptic source, as observed
in Fig. 2C,F.

dBCM leads to spatial structure in the synaptic weights

To test whether dBCM can form spatial structure in the synaptic
weights, we simulate synaptic plasticity in a recurrent network
model. The network is composed of an excitatory neuron population
with dense, all-to-all connectivity, and an inhibitory neuron popula-
tion with no recurrent connections. The excitatory and inhibitory
neurons are reciprocally connected in an all-to-all manner. Only
excitatory-excitatory synapses undergo synaptic plasticity, whereas
the weights of other synapse types remain fixed.
We test the effects of plasticity under both BCM and dBCM by

presenting each excitatory neuron in the network with random,
uncorrelated external inputs, as described in Methods. In networks
with BCM, without a diffusive neurotransmitter and where synaptic
updates are purely local, the synaptic weight matrix after a long per-
iod of synaptic plasticity exhibits no apparent spatial structure
(Fig. 3E). Synaptic weight gradually increase or decrease from their
initial uniform value, and tend towards either their minimum or
maximum values, where they remain relatively stable (Fig. 3B, grey
traces).
Similar synaptic weight dynamics are observed in networks with

dBCM (Fig. 3B, black traces), although differences emerge in the
spatial structure of the synaptic weight matrix after plasticity
(Fig. 3F). Neurons are much more likely to have strong synaptic
connections with neighbouring neurons, and to have very weak con-
nections with neurons that are further away. This is a direct conse-
quence of the effect of diffusion, as illustrated in Fig. 1, and the
competitive nature of BCM, which ensures that a small proportion
of incoming synapses reach their maximum weight, whereas the
remaining synapses tend towards their minimum weight.
The resulting spatial structure in the synaptic weight matrix

reflects the underlying spatial structure described by the pairwise
diffusive range between neurons. This is demonstrated by the blocks
of strongly interconnected neurons which emerge following plastic-
ity in Fig. 3G. These blocks reflect the blocks in the diffusive range
matrix which emerge due to the randomly generated positions of
excitatory neurons in Fig. 3D. Indeed, the competitive nature of the
learning rule enhances the spatial structure, as synapses between clo-
sely neighbouring neurons approach the maximum weight wmax,
whereas the remaining synapses approach the minimum synaptic
weight of 0. Simulations of multiple networks confirmed this effect,
by measuring the mean synaptic weight difference between a

Fig. 1. Illustration of the effect of synaptic plasticity mediated by a diffu-
sive neurotransmitter (dBCM, bottom) in comparison with synaptic plasticity
determined by a standard Bienenstock–Cooper–Munro (BCM) learning rule
(top). The grey cloud surrounding the active postsynaptic neuron represents
the spatial range of the diffusive neurotransmitter which mediates synaptic
plasticity in the dBCM rule.
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neurons five nearest neighbours and five furthest neighbours. For
networks with BCM, there was a mean weight difference of
�0.003 � 0.006, whereas for networks with dBCM there was a sig-
nificant mean weight difference of 0.04 � 0.01 (P = 0.01, unpaired
t-test, � represents the standard deviation).
The spatial structure in the synaptic weights which emerge due to

dBCM also leads to spatial correlations between the firing rates of
neurons in the network. This is shown in Fig. 3I, where pairwise
correlations in the firing rates between neurons in response to ran-
dom inputs also reflect the spatial structure of the diffusion range
matrix. Neurons that are located close together exhibit highly corre-
lated firing rates, due to their strong synaptic coupling. These simu-
lations demonstrate that plasticity which is mediated by a diffusive
neurotransmitter can lead to spatial structure in the synaptic connec-
tivity and activity of recurrent networks.
Having demonstrated that dBCM leads to spatial structure in the

synaptic weight matrix, and as Fig. 2 demonstrated how the spatial
extent of diffusion varies with properties of the diffusive neurotrans-
mitter, we next wondered whether the resulting structure depends on
the width of the diffusive range, rD.
To test this, we decrease the width to rD = 0.025. Figure 3H

shows the final synaptic weight matrix after this change. The num-
ber of neighbouring neurons that are highly interconnected is
reduced, and strong synapses which do not follow a particular spa-
tial structure begin to emerge, similar to Fig. 3E. The impact of
decreasing rD is explored further in Fig. 3J, which shows the rela-
tionship between the firing rate correlations of pairs of neurons
and their distance apart, for multiple values of the diffusive range.
As the diffusive range is reduced, the dependence of firing rate
correlations on distance becomes weaker. The resulting spatial
structure does not depend significantly on the rate at which the
spatial activity of neighbouring neurons is averaged. Qualitatively
similar results emerge if the time constant s~y determining the spa-
tial average of the postsynaptic firing rate is slower, or indeed if
instantaneous averaging is simulated, where s~y ? 0 (data not
shown). These results show that dBCM leads to spatial structure in
the synaptic weights, and that this structure depends on the diffu-
sive range.

A dBCM learning rule develops specific connectivity biased by
spatial organisation

As we have shown differences in the manner which synaptic weight
changes occur between BCM and dBCM, we now ask whether the
development of specific connectivity, which is a feature of the
canonical BCM learning rule, remains present in our dBCM learning
rule. To test this, we assign correlated external inputs to different
groups of neurons within the network, as described in Methods.
Each of these four groups of 10 correlated inputs may be thought of
as representing a certain stimulus, such as the orientation of moving
bars presented as visual stimuli.
We first test the effects of both BCM and dBCM in response to

groups of correlated external inputs when these groups have a spa-
tial structure, as shown in Fig. 4A. Figure 4B shows the final synap-
tic weight matrix after a period of plasticity mediated by the
standard BCM learning rule, where weight updates are local.
Assemblies of strongly interconnected neurons clearly emerge, due
to neurons within these assemblies receiving external inputs from
the same correlated input group (Ko et al., 2013). This results in
synapses within these assemblies potentiating in response to high
co-activity, whereas synapses between assemblies undergo depres-
sion as the sliding threshold, hi (which determines the postsynaptic
activity level necessary for potentiation), gradually increases in
response to increased recurrent excitation. The emergence of
strongly interconnected assemblies of neurons in response to corre-
lated inputs are well described in the literature (Hopfield, 1982;
Mongillo et al., 2005; Clopath et al., 2010; Sadeh et al., 2015;
Zenke et al., 2015).
For networks with dBCM, similar assemblies of strongly intercon-

nected neurons which share correlated inputs develop during synap-
tic plasticity (Fig. 4C,D). However, as demonstrated in Fig. 3,
dBCM also leads to spatial structure in the synaptic weight matrix
which reflect the diffusive range matrix. The final synaptic weight
matrices shown in Fig. 4C,D are therefore influenced by both the
spatial structure of correlated external inputs and the underlying spa-
tial structure of the neurons, given by the diffusive range matrix.
This leads to neuronal assemblies which, while primarily

Fig. 2. Diffusive range of multiple synaptic sources within a volume. (A) Steady-state concentration of nitric oxide (NO) for a 2D slice of a cube with length
50 lm, containing 25 synaptic sources of NO. The inactivation rate of NO is set at k = 5 s�1. (B) Same as A, but for 125 synaptic sources of NO. (C) Steady-
state concentration of NO for points on the slice shown in Fig. 2A, B, depending on the distance from each point to its nearest active synaptic source in the
volume. (D–F), same as A–C, but for k = 138 s�1.
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interconnected with neurons sharing correlated inputs, also exhibit a
significant degree of overlapping connectivity with neighbouring
neuronal assemblies. Having tested the network response to spatially
structured correlated inputs, we will now consider the response to
spatially unstructured correlated inputs. This is achieved by ran-
domly assigning four groups of 10 external inputs to the neurons
independent of spatial position, as shown in Fig. 4A and as
described in Methods. Assemblies of strongly interconnected neu-
rons which share inputs from the same group can be more easily
visualised if neuron indices in the final synaptic weight matrix are
reordered so that neurons are ordered by input group identity, and
not by spatial position. This reordered weight matrix is shown in
Fig. 4F. Although a significant portion of strong synapses within the

network can be attributed to these assemblies formed by shared cor-
related inputs, there still remains some underlying spatial structure
within the weight matrix due to the diffusive effect of dBCM. Fig-
ure 4G shows the weight matrix, ordered again by spatial location
as in Fig. 4E, but where synapses between neurons that share corre-
lated external inputs are coloured blue. This demonstrates that, even
when correlated input leads to the development of strongly intercon-
nected neuron assemblies which are not spatially structured, a small
amount of spatial structure still remains in these networks due to the
influence that dBCM has on neighbouring neurons.
These results suggest that, together with the emergence of spatial

synaptic structure, specific connectivity driven by correlated stimuli
can develop in networks with dBCM.

Fig. 3. Diffusive Bienenstock–Cooper–Munro (BCM) plasticity leads to spatial structure in the synaptic weights. (A) Architecture of the recurrent network
model. (B) Evolution of sample synaptic weights during plasticity mediated by either the BCM (grey traces) or diffusive BCM (dBCM, black traces) learning
rule. Synaptic weights are sampled every 100 s. (C) Diffusive range matrix for excitatory neurons within the recurrent network, for the case where neurons loca-
tions are regularly distributed between 0 and 1. Note that periodic boundary conditions are used to calculate distance. (D) Diffusive range matrix for the case
where neuron locations are randomly distributed between 0 and 1, then ordered by index. (E) Final excitatory synaptic weight matrix of a network receiving
random inputs with synaptic plasticity mediated by a BCM learning rule. (F) Same as E, but for a network with synaptic plasticity mediated by a dBCM learn-
ing rule, and with regularly distributed neuron locations. (G) Same as F, but for a network with randomly distributed neuron locations. (H) Same as F, but when
the diffusive range width is decreased to rD = 0.025. (I) Pairwise Pearson correlation coefficients between the firing rates of neurons in the network shown in
F. (J) The dependence of the mean Pearson correlation coefficient of the firing rates of two neuron on their distance apart, as the diffusive range width rD is
varied between 0.01 and 0.25. Correlation coefficients are averaged over five independent network instantiations for each value of rD. Errorbars denote the
standard deviation.
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Receptive fields developed with dBCM are spatially organised

We have shown that dBCM leads to spatial structure in recurrent
networks. We hypothesise that diffusive plasticity can also form spa-
tially organised receptive fields, such that neighbouring neurons will
develop similar stimulus tuning. To test this, we compare the com-
pare the effects of a BCM and a dBCM learning rule in feedforward
networks, with architecture as described in Methods and illustrated
in Fig. 5A. We simulate the development of receptive fields to
specific stimuli by sequentially presenting a randomly chosen input
out of the five possible inputs to the network as synaptic plasticity
occurs. This is further described in Methods. Over time, the compet-
itive nature of BCM will lead to the strengthening of a single
incoming synapse for each output neuron, which determines the
input that particular output neurons becomes responsive to, whereas
the remaining incoming synaptic weights tend towards 0. This is
shown in Fig. 5B, where we plot the evolution of synaptic weights
from a single example input neuron to the 50 output neurons. In this
case, five output neurons have become responsive to this input,
whereas the remaining output neurons become unresponsive.
A different outcome to the standard BCM learning rule emerges

in networks with a dBCM learning rule. Figure 5C shows the evolu-
tion of postsynaptic weights for an example input neuron, as in
Fig. 5A. Although output neurons become selective to only a single
input as before, some spatial structure now emerges regarding which
output neurons respond to a particular input. This is clearly in
demonstrated in Fig. 5C, where the nine outputs responsive to the
input are all located within the same spatial region. This can again

be explained by the effect that changes in synaptic weights have on
incoming synapses of neighbouring postsynaptic neurons, illustrated
in Fig. 1. Figure 5D,E further illustrates the difference between
dBCM and BCM, where we plot the final incoming synaptic
weights for the 50 output neurons. For standard BCM, there is no
significant correlation in the input which a particular output neuron
is selective to compared with its neighbouring output neurons
(Fig. 5D). For dBCM, output neurons are highly likely to develop
selectivity to the same input as their neighbouring neurons
(Fig. 5E).
Given these differences in receptive field development, we

hypothesised that functional differences would emerge between
these networks, such as in their response to changes in input statis-
tics. We test this directly by turning off one input to each network
and allowing them to run with plasticity for a further. Figure 5F,G
show the incoming synaptic weights after this period of plasticity
for the same networks as in Fig. 5D,E. In both networks, the synap-
tic weights decrease from the input we have turned off (labelled
with index 0), and the corresponding output neurons compensate by
increasing their synaptic weights from inputs which have remained
active. As such, neurons which are selective to inactive stimuli
undergo plasticity to become selective to active stimuli. This rewir-
ing occurs significantly faster in networks with dBCM than in net-
works with BCM (Fig. 5F,G. Mean absolute weight across five
independent network instantiations is 0.03 � 0.01 for BCM and
0.06 � 0.01 for dBCM. P = 0.01, unpaired t-test, � represents the
standard deviation). In addition, output neurons in the network with

Fig. 4. Specific connectivity in response to spatially structured or unstructured groups of correlated inputs. (A) Illustration of the inputs to a network, when
groups of correlated inputs are either spatially structured (top) or have no spatial structure (bottom). (B) Final excitatory synaptic weight matrix of a network
receiving correlated inputs from spatially structured groups with synaptic plasticity mediated by a Bienenstock–Cooper–Munro (BCM) learning rule. (C) Same
as B, but for a network with synaptic plasticity mediated by a diffusive BCM (dBCM) learning rule, and with regularly distributed neuron locations. (D) Same
as C, but for a network with randomly distributed neuron locations. (E) Final excitatory synaptic weight matrix of a network receiving correlated inputs from
groups with no spatial structure, and with synaptic plasticity mediated by a BCM learning rule. (F) The same synaptic weight matrix as in E, with neuron
indices reordered (see black arrows) such that they correspond to input group and no longer to spatial location. (G) The same synaptic weight matrix as in E,
but with synapses that form the strongly interconnected assemblies of neurons, shown in F, coloured blue to highlight the underlying spatial structure which
remains.
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dBCM rewire so that their new selective inputs are the same as
those of neighbouring neurons (Fig. 5G), suggesting that the spatial
influence of synaptic weight updates facilitates the recruitment of
inactive neurons.
These simulations demonstrate that the influence of neighbouring

neurons on synaptic plasticity in a network with dBCM leads to the
development of receptive fields which are spatially organised, and
which have a more flexible representation of stimulus statistics.

Discussion

This study proposes a new form of Hebbian plasticity which is
mediated by a diffusive neurotransmitter, such that synaptic weight
updates are influenced by the activity of neighbouring postsynaptic
neurons (Fig. 1). This is in contrast with canonical models of neural

plasticity, which generally only allow for communication between
neurons with existing synaptic connections. We establish the condi-
tions necessary for effective diffusive neurotransmission to synapses
of neighbouring neurons (Fig. 2), and explore the consequences of
this mechanism in a simple network model.
The primary consequence of our proposed dBCM learning rule is

the emergence of spatial structure in the synaptic weight matrix after
a period of plasticity. We first demonstrate this in a simple recurrent
network model receiving random uncorrelated inputs (Fig. 3), which
results in neighbouring neurons developing strong synaptic connec-
tions, whereas neurons that are located further away from each other
develop weak synaptic connections. This differs from the standard
BCM learning rule with a purely local synaptic update, which
results in a spatially uncorrelated synaptic weight matrix (Fig. 3E).
Indeed, the extent of spatial correlations in the firing rates of

Fig. 5. Emergence of spatially organised receptive fields in a feedforward network with diffusive Bienenstock–Cooper–Munro (BCM). (A) Architecture of the
feedforward network model (left), and connectivity after diffusive BCM (right). (B) Evolution of the synaptic weights from an example input neuron onto the
50 output neurons in a feedforward network with a BCM learning rule, as a randomly chosen input out of the five possible inputs are sequentially presented.
Synaptic weights are sampled every 100 s. (C) Same as in B, but for a network with a diffusive BCM (dBCM) learning rule. (D) Final synaptic weights
between all five input neurons and 50 output neurons in a network with a BCM learning rule. (E) Same as in D, but for a network with a dBCM learning rule.
(F) Synaptic weights between all five inputs neurons and 50 outputs neurons in a network with BCM, after a period of plasticity following the removal of input
0. (G) Same as in F, but for a network with a dBCM learning rule.
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neurons after dBCM increases with the range of the diffusive neuro-
transmitter (Fig. 3J).
We next test how the synaptic weights evolve in response to

groups of correlated inputs. As expected from previous studies
(Mongillo et al., 2005; Sadeh et al., 2015), correlated input leads to
the development of strongly interconnected neuron assemblies dri-
ven by common input, in both networks with a BCM or dBCM
learning rule (Fig. 4). However, in networks with dBCM, there still
remains some underlying spatial structure within the synaptic weight
matrix due to the influence of the activity of neighbouring neurons
on synaptic plasticity. This occurs both when the groups of corre-
lated inputs have some spatial structure (Fig. 4C,D), or when they
are spatially unstructured (Fig. 4E–G).
The spatial structure which emerges due to dBCM in addition to

the spatial structure imposed by correlated inputs may be of func-
tional relevance. For brain regions in which similar stimuli are topo-
graphically organised such as the primate early visual cortex or cat
auditory cortex (Reale & Imig, 1980; Kaschube, 2014), assemblies
developed from dBCM would be more likely to coactivate with sim-
ilar stimuli compared with assemblies developed from BCM. Such
coactivation could ensure more flexible stimuli representations in
environments with dynamic stimulus statistics, as explored in Fig. 5.
It is also possible that the spatial correlations in stimulus preferences
introduced by dBCM could have a detrimental impact on neural
coding by introducing redundancy of stimulus representations across
neighbouring neurons.
Finally, we explore the effect of dBCM in a simplified model of

receptive field development in a feedforward network (Fig. 5). The
emergence of spatially correlated receptive fields suggests a potential
mechanism for the development of orientation preference maps in
visual cortex, in which the extent of spatial correlation in these maps
would be determined by the range of the diffusive neurotransmitter.
The spatial organisation resulting from networks with a very small
diffusive range, or with only BCM, would resemble the salt-and-pep-
per organisation of orientation preferences observed in mouse visual
cortex (Kaschube, 2014). There are a range of mechanisms which
have been proposed to explain the development of topographic
organisation in visual cortex, extensively reviewed by Erwin et al.
(1995; Vidyasagar & Eysel, 2015). Notably, there is much debate on
the role of spatially structured feedforward thalamic input which may
already be biased to a certain orientation selectivity, compared with
the emergence of orientation selectivity through intracortical interac-
tions (Somers et al., 1995; Kuhlmann & Vidyasagar, 2011).
Although dBCM provides an energetically efficient alternative mech-
anism to these theories as it acts independently of synaptic connectiv-
ity, it is not to our knowledge in contradiction with them. Indeed, it
is plausible that dBCM may act in concert with other mechanisms to
enhance the topographic organisation of stimulus preferences. This
hypothesis can be tested in experiment by blocking the action of dif-
fusive neurotransmission during development, and testing whether
the development of spatially structured stimulus selectivity is
impaired. Animal models which are deficient in NO synthase, a can-
didate mediator of dBCM, have been developed (Huang, 2000). In
addition, we demonstrate a functional advantage of dBCM over
BCM. Networks with dBCM exhibit a more flexible response to a
loss of input by rewiring, compared to networks with BCM (Fig. 5F,
G). These functional properties may also be investigated in an animal
model deficient in NO synthase by testing the plasticity of responses
to chronic changes in environmental stimulus statistics.
A significant assumption of our model is that neurons occupy a

single point in space. As the spatial extent of dendritic branches can
be very large compared with the distance between neighbouring

neurons (London & H€ausser, 2005), it is not necessarily the case
that synapses are spatially distributed in an ordered manner. How-
ever, a recent overview discussing the plausibility of NO volume
transmission from synaptic sources found that the most likely sce-
nario was one in which multiple synaptic sources combined to cre-
ate a cloud of gas which would affect all local targets (Garthwaite,
2015), which we have explored in Fig. 2. As such, our assumption
is a reasonable approximation of this scenario. Future research could
investigate the emergent spatial structure in a more biophysically
realistic model of a cortical network which includes a 3D descrip-
tions of space (Bauer et al., 2014).
Note that the yj and yi term outside the bracket in Eqn 6 ensures

that some amount of activity is still required in both pre and postsy-
naptic neurons for synaptic plasticity to occur regardless of the
activity of neighbouring neurons, as a value of 0 for either leads to
no change in the synaptic weight. As the BCM learning rule is
equivalent to a biologically realistic triplet STDP rule for rate-based
patterns (Gjorgjieva et al., 2011), we would expect qualitatively
similar results in a network of spiking neurons. The consequences
of diffusive neurotransmitters mediating other forms of Hebbian or
homeostatic plasticity have been explored previously by Kohonen
(1993; Smith et al., 2002; Bhaumik & Mathur, 2003; Yin et al.,
2005; Savin et al., 2009; Gupta & Markan, 2014; Sweeney et al.,
2015). Although we remain agnostic to the identity of the diffusive
neurotransmitter which mediates synaptic plasticity in our proposed
dBCM learning rule, there are a number of candidates which have
been previously identified. Nitric oxide, carbon monoxide and
hydrogen sulphide are all gaseous neurotransmitters which are activ-
ity-dependent and have been implicated in synaptic plasticity sig-
nalling pathways (Dawson & Snyder, 1994; Boehning & Snyder,
2003). Of these, the most studied is NO, whose diffusive properties
are consistent with our putative neurotransmitter (Philippides et al.,
2000; Garthwaite, 2015; Sweeney et al., 2015), and which is impli-
cated in signalling pathways related to both long-term potentiation
and long-term depression (Kiss & Vizi, 2001; Gallo & Iadecola,
2011; Hardingham et al., 2013). Indeed, there is some experimental
demonstration which implicate NO in long-term potentiation that is
locally distributed across neighbouring neurons (Bonhoeffer et al.,
1989; Schuman & Madison, 1994; Madison & Schuman, 1995).
It is also worth noting that the consequences of NO in mediating

a form of homeostatic intrinsic plasticity have been investigated, in
which diffusion was modelled in detail in a spiking neural network
model (Sweeney et al., 2015). Although the effect of this proposed
diffusive homeostasis is increased heterogeneity in neural firing
rates, here we propose an unrelated mechanism which acts through
synaptic as opposed to intrinsic plasticity.
The structure of synaptic connectivity within sensory cortical net-

works has been of keen interest in recent years, as experiments elu-
cidate the relationship between the sensory features that neurons
encode and their functional connectivity (Harris & Mrsic-Flogel,
2013; Cossell et al., 2015). Our proposed dBCM learning rule
demonstrates that diffusive neurotransmission can introduce spatial
structure in the synaptic connectivity of a network, providing possi-
bilities for the interaction between functional organisation driven by
common sensory features and functional organisation driven by the
underlying spatial distribution of neurons within a network.
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